| Bioprocess engineering | | |-----------------------------|--| | Code | (not yet made available) | | Credits (as per ECTS) | 7 | | Attendance time | 7 SWS | | Course language | English | | Duration | 1 semester | | Rota | annually | | Module coordinator | Prof. Dr. Ebert | | Assistant professor(s) | Prof. Dr. Ebert | | Incorporation in the degree | Industrial biotechnology BSc, mandatory module, 4 th Semester | | programs | madstrial biotechnology BSC, mandatory module, 4 Schiester | | Required knowledge | Content: Recommendation: Technical microbiology,
biochemistry | | Learning outcomes | Students that have successfully completed this module, understand biological methods for materials production using microorganisms in bioreactors are capable of conducting a fed-batch fermentation at a scale of 20 litres with preparation and analysis of the product, as well as of evaluating and balancing the process master basic aspects of statistical experiment planning understand biological methods for materials production using microorganisms in bioreactors | | Content | The following technical contents are taught in this module: | | | Lecture "Bioprocess engineering" Profitability of bioprocesses under consideration of various aspects of a production Media components and media composition, development of media Growth kinetics and growth models (Monod model and logistic growth) Balancing of bioprocesses Derivation of bioprocess models (batch, fed-batch, continuous process with and without cell retention Cleaning and sterilisation processes Transport processes in biosuspensions Introduction to design of experiments (DOE) (full-factorial and fractional factorial experiment designs, data evaluation, introduction to the "MODDE" software | | | Practical course "Bioprocess engineering practical course" Reactor preparation, sterilisation, manufacture of media and buffers Process control in the fed-batch mode for cultivation of <i>Cupriavidus necator</i> and the manufacture of Polyhydroxybutyrate Process monitoring and online and offline analysis (substrate and metabolic products) Optimisation of the reconditioning process of biopolymers (here: polyhydroxybutyrate) using DOE as well as aspects of the scale-up to the production scale. | | | Gas-chromatography analysis of products including | |--------------------------------|--| | | derivatisation | | | Evaluation with regards to the specific process parameters
in the bioreactor | | | Determination of the yields of the complete process | | Literature | Lecture "Bioprocess engineering" | | | Lecture notes | | | Chmiel, Horst; Bioprozesstechnik, Spektrum-Verlag, 3. Auflage | | | Storhas, Winfried; Bioverfahrensentwicklung; Wiley-VCH, 2. Auflage | | | Practical course "Bioprocess engineering practical course" | | | Practical course handout | | | Chmiel, Horst; Bioprozesstechnik, Spektrum-Verlag, 3. Auflage | | | Steinbüchel, Oppermann-Sanio, Ewering, Pötter; | | | Mikrobiologisches Praktikum, Springer Spektrum-Verlag, 2. Auflage | | Forms of teaching and learning | Bioprocess engineering (V), 2 SWS, 2 LP | | | Bioprocess engineering practical course (P), 5 SWS, 5 LP | | Workload | Lecture "Bioprocess engineering" | | | Attendance time: 30 h | | | Individual study: 30 h | | | Practical course "Bioprocess engineering practical course" | | | Attendance time: 75 h | | | Individual study: 75 h | | | Total | | | Total Attendance time: 105 h | | | Individual study: 105 h | | | Total: 210 h | | Evaluation method | The evaluation is a written exam (60 minutes) covering the | | | entire module. | | | Participation in this written examination requires students to | | | have successfully completed the prerequisite "Bioprocess | | | technology practical course (P)" (written composition, | | Cyadiaa | presentation). | | Grading | The module grade corresponds to the result of the | | | examination. |