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ABSTRACT: Measuring the natural frequency of buildings and bridges is a possibility to get information about the 

stiffness of the construction. Decreasing stiffness can be detected be repeatedly measurements. Damaged parts of the 

construction or too high wood moisture can be reasons for decreasing stiffness. The earlier the failure is detected the 

better is the chance to repair it with low costs. The method of monitoring by repeatedly measuring the natural frequency 

is applied at timber bridges, especially on footbridges. As damages due to high wood moisture cannot be seen easily, 

measuring the natural frequency is a good possibility to detect them and then to repair them. Equations to calculate the 

natural frequencies regarding the damaged parts are shown and applied to a simple supported beam. 
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1 Introduction 

Bridges are subjected to natural environment. Therefore 

the moisture content can increase locally, providing the 

necessary environment conditions for the growing of 

timber deterioration fungi. These critical points are often 

in the range of joints, which can hardly be checked 

visually (see Fig. 1). 

 

Since the deterioration of timber leads to a reduction of 

the load capacity, the critical points in the structure have 

to be identified.  

One possible method to identify these critical points is a 

proof loading of the system. Within this method the 

structure is loaded statically and the reaction is 

monitored e.g. via photogrammetry. Comparing the load 

with the reaction of the system, the deterioration of the 

system can be checked in principle.  

 

However proof loading is quite expensive and time 

consuming, since the load has to be applied and the 

measurement equipment has to be installed. 

 

 

_________________________________________ 
1 Patricia Hamm, Biberach University of Applied Sciences, 

hamm@hochschule-bc.de  

 
2 Jörg Schänzlin, Biberach University of Applied Sciences, 

schaenzlin@hochschule-bc.de  

 
3 Wolfgang Francke, Konstanz University of Applied Sciences, 

francke@htwg-konstanz.de  

 
4 Stefan Scheuble, Konstanz University of Applied Sciences, 

stscheub@htwg-konstanz.de 

 

 
a.) Bridge 

 
b.) Damage in the range of the joint 

Figure 1: Example of a bridge with a damage in the joint 

between planks and beam 



 

The applied loads are often dead loads, which can be 

determined by 
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where  F  force  

m  mass  

a  acceleration  

   

 

In the static case, the acceleration is the gravity. In the 

dynamic case the acceleration covers the reaction of the 

system as well as the gravity. So additional forces arise 

if the system is loaded dynamically. One case of 

dynamic loading is, when vibrations in the system occur. 

These vibrations can be caused by temporally acting 

forces as wind or persons crossing the bridge. The 

system starts vibrating and therefore the masses of the 

structure are accelerated, leading to a force in the 

system.  

Therefore a vibration can be interpreted as a temporarily 

acting proof load. The values of the eigenfrequencies 

depend on the mechanical properties of the structure. 

Changing mechanical properties as the deterioration of 

the cross section should be identified by the 

measurements of the eigenfrequency. In the following a 

concept will be proposed, with which the reduced 

stiffness in bending systems can be identified. 

 

 

2 Theoretical background 

For the determination of the influence of a deteriorated 

point, the differential equation of the equilibrium of 

forces can be set up  
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where  m  mass in kg/m  

 a  acceleration  

 EJ  bending stiffness 

 w  deformation  

   

In an undamaged system, this equation can be solved by 

assuming a sinusoidal course of the deformation w. 

However in the damaged case, the bending stiffness 

decreases in the range of the damage.  

To solve this equation despite the damage, the single 

span system is divided into the two systems A and B. 

 
Figure 2: Subsystems 

 

The differential equation is solved separately for both 

systems. In order to connect both systems, the boundary 

conditions between both systems are  

• equal deflection  in both subsystems  

• equal bending moments in both systems at the 

damage  

• the difference of the bending angle between 

both systems is 
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where  α  bending angle between both systems  

 M  bending moment at the damage  

 K  bending stiffness  

   

 

The bending stiffness can be determined by 
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where  � spring, representing the damage  

�������� bending stiffness at the damage  

�� undamaged bending stiffness  

 ������  length of the damage  

normally assumed to be equal to 

the depth of the damage  

 

The resulting equation of this procedure is given in Eq. 5 

(see Fig. 3). 

 

(5) 

 

where  m  mass  

EJ  bending stiffness 

ω  Eigen-Kreisfrequenz  

L  length of the beam  

x  location of the damage  

K  
spring representing the stiffness at the 

damage  

 

 



 
Figure 3: Parameters of Eq. 5 

 

Solving this equation, the influence of a damage in the 

location x on the eigenfrequency can be evaluated (see 

Fig. 4). 

 

 
Parameters  

• span: 10 m  

• cross section: h/b = 50/16cm  

• strength class: GL24h  

• mass: 200 kg/m  

• damage at x=6.282m  

• single span girder 

Figure 4: Evaluated influence of a damage on the 

eigenfrequency 

 

3 Preliminary experimental investigations 

3.1 General 

In order to verify the derived equation, up-to-now one 

beam has been experimentally studied. Within this study 

the eigenfrequencies of a timber beam C24 were 

measured. The cross section is b/h = 6/10 cm, the beam 

length is 3,06 m (see Fig. 5) and the span is 3,00 m. 

 

 
Figure 5: Drawing of the test setup 

 

The eigenfrequency was measured by 7 vertical 

accelerometers, uniformly distributed along the beam 

axis (see Fig. 6). 

 

 
Figure 6: Accelerometer 

 

In order to simulate a damage of the beam, the timber 

cross section in midspan was cutted sequentially within 5 

mm steps until a total "damage" of 55mm (see Fig. 7). 

 

 
Figure 7: "Damage" of the beam in midspan (here 30% 

of the cross section height) 

  



In order to identify the non geometrical parameters as 

bending stiffness and mass, the eigenfrequencies were 

determined with and without an additional mass. This 

mass was applied by cubes of alloy uniformly distributed 

along the beam axis as can be seen in Fig. 8. 
 

 
Figure 8: Beam B1 loaded with an additional mass 

 

The excitation of the system is ambient and the duration 

of one set of measurements of the vibrations lasts 20 

minutes. 

 

3.2 Influence of the "damage" on the 

eigenfrequency 

The damage in the cross section was simulated by a cut 

in midspan with different depths. The eigenfrequency 

was measured for every depth within 5mm steps. A 

modal analysis was performed at every 5 mm depth of 

the cut.  
 

In Fig. 9 the measured eigenfrequencies for different 

depths of the damage are shown. 
 

 
(a) unloaded system 

 
(b) loaded system 
 

Figure 9: Measured eigenfrequencies with different 

depths of the "damage" 

As can be seen, the measured eigenfrequencies are in the 

range of 10Hz to 200Hz. Since the accuracy of the 

results of the measurements drops with increasing value, 

only the eigenfrequencies below 150Hz are considered 

in the following.  

 

In Fig. 10 the eigenfrequencies are related to the 

eigenfrequencies of the non damaged system. 

 

 
(a) unloaded system 

 

 
(b) loaded system 

 
Figure 10: Ratio of the eigenfrequencies of the beam at 

different stages of the damage related to the eigenfrequency of 

the non damaged system 

 

As can be seen, the eigenfrequencies drop within 

increasing size of the damage (see Tab. 1). 

 

Table 1: Ratio of the eigenfrequency depending on the 

depth of the damage 

depth  
eigenfrequency 
1st  2nd  3rd  

unloaded beam 

20mm  0.97  0.92  0.83  
40mm  0.75  0.79  0.78 
55mm  0.70  0.83  0.75  
loaded beam 

20mm  0.80  0.99  0.91  
40mm  0.65  0.92  0.77  
55mm  0.61  0.95  0.65  

 

A significant decrease of the first eigenfrequency of 

more than 3% can be measured for a damage of the 

unloaded beam, and more than 20% for the loaded beam.  

 



However the 2nd frequency drops although the damage 

is in midspan and should not affect the second 

eigenfrequency, since the eigenmode leads to a value =0 

at midspan (see Fig. 11). 

 

 
Figure 11: 1st and 2nd eigenmode of the measured 

beam 

 

Therefore no bending moment should exist in midspan.  

Up-to-now the reason for this influence is not known, 

however additional tests – e.g. determination of the MoE 

– will be performed on this type of beams in order to 

identify the reason for this behaviour.  

 

Generally spoken, the eigenfrequencies are influenced 

by the depth of the damage. So it should be possible to 

identify damages at a certain stage by comparing the 

eigenfrequencies between those stages. One focus of the 

ongoing studies will be the clarification, whether the 

damage can be recognized and which accuracy of the 

measurements is required in order to predict the damage 

in time. 

 

 

4 Comparison between measurement and 

evaluation 

4.1 Input values 

For the determination of the eigenfrequency geometrical 

parameters as well as parameters related to the cross 

section need to be known. The geometrical values can be 

easily measured, whereas the bending stiffness as well as 

the mass can often not be directly measured. For that 

reason cubes made of alloy were placed on the beam and 

the eigenfrequency was measured for the loaded 

configuration. Based on 

 

  (6) 

 

the influence of the additional mass Δm on the frequency 

can be determined by 

 

 (7) 

 

where  m  unknown mass of the specimen  

f1  frequency of beam without additional 

mass  

f2  frequency of beam with additional mass  

Δm  applied additional mass  

 

However the applied load is not a uniform distributed 

load as required in the equation, but consists of single 

loads. In order to consider these single loads, the energy 

of these loads in dependency on the eigenmode is 

determined. The value of the uniform distributed load is 

determined by the equality of the energy of the single 

eigenmode.  

With the measured first eigenfrequencies of the loaded 

and the non loaded system, the mass of the beam can be 

determined to 2,86kg/m. The weighing of the beam leads 

to a mass of 3,08kg/m, which leads to a difference of 

9%. 

 

Table 2: Measured first eigenfrequency of the beam 

 

without additional mass  18.707Hz  
with additional mass Δm  14.437Hz  

 

Applying this determined weight and the frequency of 

the non loaded system in Eq. 6, a MoE of 12914 N/mm² 

can be determined by 

 

  (8) 

 

This MoE has not been verified experimentally so far, 

however this parameter will be determined by a four-

point bending test at the end of the test series. 

 

4.2 Numerical simulation of the damage 

With the input values, the eigenfrequencies of the beam 

with different depths of damage have been determined 

by solving Eq. 5. As can be seen in Fig. 12 the 

evaluation according to Eq. 5 overestimates the results. 

 

 
Figure 12: Comparison between test and evaluation of 

the 1st eigenfrequency of the unloaded system 

 

The modelling of the damage is one important 

parameter. According to Eq. 4 the stiffness of the cross 

section is fully active until the edge of the damage. In the 

range of the damage it suddenly drops to the stiffness of 

the reduced cross section. So no transition is considered. 

Therefore it is expected, that the stiffness representing 

the damage according to Eq. 4 is overestimated.  

 



 

To consider the transition from the damage to the non 

damaged range, it is assumed that the stresses are spread 

and the damaged depth decreases in a ratio depth:length 

equal 1:2 parallel to the grain, so the effective cross 

section increases continuously (see Fig. 13). 

 

 
Figure 13: Reduced cross section for the determination 

of the effective stiffness representing a damage 

 

If the system is loaded, differences even in the first 

eigenfrequency occur (see Fig. 14). 

 

 
Figure 14: Comparison between test and evaluation of 

the 1st eigenfrequency of the loaded system 

 

At the moment no systematic error can be identified, 

since the influence of the 3rd eigenfrequency of the 

loaded system can be modelled with a sufficient 

accuracy (see Fig. 15) in difference to the 1st 

eigenfrequency (see Fig. 14). 

 

 

 
Figure 15: Comparison between test and evaluation of 

the 3rd eigenfrequency of the loaded system 

 

However the tendency of the reduction of the 

eigenfrequency depending on the depth of the damage 

can be seen. One influence on the difference between the 

evaluation and the measurements is, that the measured 

eigenfrequency drops from the non-damaged system to a 

damage size of 5mm. The evaluation does not show this 

dropping of the frequency between those two states. 

However the non damaged status was used in order to 

identify the parameters for the evaluation (see Eq. 7 and 

Eq. 8).  

The behaviour of the eigenfrequency can be modelled 

even if there are larger differences. Within the shown 

results of one test the evaluation depends less on the 

damage depth than the measurements. Therefore it is 

expected, that the monitoring of the eigenfrequency 

could be one tool in order to identify damages in an early 

stage. However within the ongoing studies these 

preliminary conclusions will be validated against 

additional tests. 

 

 

5 Reverse identification of the damage 

The original goal of these studies was the identification 

of existing damages without the knowledge of the 

bending stiffness as well as the mass.  

Since there are 4 unknown parameters in Eq. 5 as  

 

• mass m  

• bending stiffness EJ and especially the MoE  

• location of the damage x  

• depth of the damage 

 

four solutions of Eq. 5 and four eigenfrequencies, 

respectively, need to be known. However in Eq. 5 the 

mass as well as the bending stiffness are part of a 

fraction, so the values themselves cannot be determined 

directly by a numerical solution process. However the 

bending stiffness needs to be known separately from the 

mass. For that reason, one eigenfrequency has to be 

considered with an additional mass.  

 

Within the solution process the parameters are adjusted 

until the measured eigenfrequencies fit to the evaluated 

eigenfrequencies. If the parameters of Eq. 5 are 

determined by means of a "normal" Newton-iteration, 

the parameters are adjusted until the error is negligible. 



However Eq. 5 has several zero-crossings. These zero-

crossings represent the eigenfrequencies (see vertical 

lines in Fig. 16). 

A "normal" Newton-iteration could solve the equation at 

the wrong eigenfrequency. For that reason, the numerical 

solution by means of the Newton-iteration was modified, 

that it first checks the number of the eigenfrequency, 

determines the values and the numerical derivations at 

the regarded point. 

 

 
Figure 16: Error of Eq. 5 

 

Nevertheless the solution process has some limitations:  

• The crossing of the value x over the peaks of 

the eigenmode, related to the used 

eigenfrequencies, is not possible in the current 

version of the iteration process. Therefore the 

starting point of the value x should be chosen in 

between the peaks and several iterations are 

necessary.  

• Due to the symmetry of the eigenmodes related 

to midspan, only the distance from midspan to 

the position of the damage x can be determined. 

It is not possible, to determine, whether the 

damage is on the left hand side or on the right 

hand side of the midspan. Nevertheless it 

should be possible to identify, whether a 

damage exists or not. 

 

Beside these limitations the exactness of the measured 

values can influence the reverse identification. As shown 

in Fig. 12 to Fig. 15 there are differences between the 

evaluation and the measured values (see Tab. 3). 

 

Table 3: Ratio between the measured and the evaluated 

eigenfrequencies 

eigenfrequency 
1st  2nd  

unloaded  0.94  0.75  
loaded  0.81  0.84  

 

 

 

 
Figure 17: Influence of the differences between the 

evaluation and the measurements on the determined 

parameters 

 

As can be seen the MoE is hardly influenced by the 

derivation of the input values, whereas the mass is 

influenced the most. Concerning the thickness in the 

range of the damage, the evaluated thickness is 

influenced the most between 90% and 100% of the 

existing differences. So even the thickness of the cross 

section in the range of the damage can be determined in 

a sufficient way except for range between 90% and 

100% of the differences between the measurements and 

the evaluation. This comparison is not a general 

conclusion, but it shows, that the differences may affect 

the results. 

 

 

6 Conclusion and outlook 

Within the study it can be shown, that in principle a 

damage can be determined by the monitoring of the 

eigenfrequencies as long as the damage is within a 

certain range. So this method could have the capability 

for the monitoring of bridges in order to detect damages 

in an early stage.  

 

However several parameters could influence the results 

of the measurements and therefore the drawn 

conclusions. So within the scope of the ongoing studies 

following points will be studied in detail among others:    

 

• How large is the influence of the accuracy of 

the measurements, if the equipment is 

assembled and after the measurements 

demounted?  

• What is the impact of the changing surrounding 

conditions mainly the moisture content of the 

timber at different points in time within a year?  

• Which method for the excitation of the system 

is the best and most suitable for the practical 

application?  

• Are the studies transferable to other structural 

systems than a single span girder?  

• What is the effect of the equipment of the 

bridge as guardrail on the eigenfrequencies and 

the drawn conclusions respectively?  

• Can the damage be identified early enough, or 

is the influence of the damage on the 

eigenfrequency too low to be detected in time? 



 

If these questions are solved within the ongoing studies, 

the measurements of the eigenfrequencies might be one 

possibility for the examination of elements subjected to 

bending as e.g. bridges. One advantage of this method 

would be, that the results of the assessment of structures 

will depend less on the experience of the examiner as it 

is today. 
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